4.6 Article

A peroxisome proliferator-response element in the murine mc2-r promoter regulates its transcriptional activation during differentiation of 3T3-L1 adipocytes

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 22, Pages 22803-22808

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M401861200

Keywords

-

Ask authors/readers for more resources

Adrenocorticotropic hormone can stimulate lipolysis and suppress leptin expression in murine adipocytes. These effects are mediated via the melanocortin 2 receptor (MC2-R), which is expressed when 3T3-L1 cells are induced to undergo adipogenesis. In this study, we have characterized the mc2-r promoter in the murine adipocyte, one of the few extra-adrenal sites of expression and a cell type that lacks steroidogenic factor 1 (SF-1), a transcription factor that is required for mc2-r expression in adrenal cells. Transcriptional regulation of the mc2-r in the absence of SF-1 was investigated by 5' deletion analysis of the murine mc2-r promoter in both undifferentiated and differentiated 3T3-L1 cells. The results revealed the presence of a 59-base pair regulatory region within the promoter containing an adipocyte-specific enhancer. The ability of this region to confer enhanced activity in the adipocyte was mapped to a peroxisome proliferator-response element (PPRE)-like sequence that bound to peroxisome proliferator-activated receptor gamma (PPARgamma) and its heterodimeric partner retinoid X receptor alpha (RXRalpha) in adipocyte nuclear extracts. Co-transfection of PPARgamma2/RXRalpha with the pMC2-R(-112/+105)GL3 reporter resulted in transcriptional activation in preadipocytes, and this response required an intact PPRE. Mutation of the PPRE to prevent PPARgamma/RXRalpha binding resulted in a complete abrogation of the pMC2-R(-112/+105)GL3 reporter activity in day 3 differentiated 3T3-L1 cells, demonstrating a key role played by this site in regulating MC2-R expression in the murine adipocyte. These data highlight a novel mechanism for mc2-r transcription, which may have significance in both adrenal and extra-adrenal sites of expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available