4.6 Article

Electronic transport through individual ZnO nanowires

Journal

APPLIED PHYSICS LETTERS
Volume 84, Issue 22, Pages 4556-4558

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1759071

Keywords

-

Ask authors/readers for more resources

Electronic transport through individual ZnO nanowires has been investigated. The current increases linearly with the bias and the conductance jumps upon ultraviolet illumination. The increase rate upon the illumination is much faster than the decrease rate as the light is off. The decrease rate under vacuum is slower than that in air. These phenomena are related to the surface oxygen species and further confirmed by in situ current-voltage measurements as a function of oxygen pressure at room temperature. Also, the conductance increases greatly as the temperature is raised. These results demonstrate that the surface oxygen species dominate the transport process through individual ZnO nanowires, which indicates their potential application to room temperature gas sensors. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available