4.5 Article

Fabrication and characterization of a nanowire/polymer-based nanocomposite for a prototype thermoelectric device

Journal

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS
Volume 13, Issue 3, Pages 505-513

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JMEMS.2004.828742

Keywords

composite; nanowires; thermal conductivity; thermoelectric device

Ask authors/readers for more resources

This paper discusses the design, fabrication and testing of a novel thermoelectric device comprised of arrays of silicon nanowires embedded in a polymer matrix. By exploiting the low-thermal conductivity of the composite and presumably high-power factor of the nanowires, a thermoelectric figure of merit, higher than the corresponding bulk value, should result. Arrays were first synthesized using a vapor-liquid-solid (VLS) process leading to one-dimensional (1-D) growth of single-crystalline nanowires. To provide structural support while maintaining thermal isolation between nanowires, parylene, a low thermal conductivity and extremely conformal polymer, was embedded within the arrays. Mechanical polishing and oxygen plasma etching techniques were used to expose the nanowire tips and a metal contact was deposited on the top surface. Scanning electron micrographs (SEMs) illustrate the results of the fabrication processes. Using a modification of the 3w technique, the effective thermal conductivity of the nanowire matrix was measured and 1 V characteristics were also demonstrated. An assessment of the suitability of this nanocomposite for high thermoelectric performance devices is given.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available