4.4 Article

Quercetin glucosides inhibit glucose uptake into brush-border-membrane vesicles of porcine jejunum

Journal

BRITISH JOURNAL OF NUTRITION
Volume 91, Issue 6, Pages 849-855

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1079/BJN20041128

Keywords

quercetin monoglucosides; intestinal glucose transport; sodium-dependent glucose transporter 1

Ask authors/readers for more resources

Recent experimental data point to an interaction of dietary flavonol monoglucosides with the intestinal Na-dependent glucose transporter I (SGLT1). To investigate this interaction in more detail, we performed experiments with SGLT1-containing brush-border-membrane vesicles (BBMV) from pig jejunum. The flavonol quercetin-3-O-glucoside (Q3G) concentration-dependently inhibited Na-dependent uptake of radioactively labelled D-glucos, into BBMV. Uptake Of L-leucine was not inhibited by Q3G, indicating a specific interaction of the glucoside with SGLT1. Whereas the maximal transport rate of concentration-dependent initial glucose uptake was not altered in the presence of Q3G, the constant for half-maximal glucose uptake was increased, suggesting a competitive type of inhibition of glucose uptake by Q3G. Trans-stimulation experiments suggested the transport of Q3G via SGLT1. In addition, Q3G decreased the Na-independent diffusive uptake of glucose into BBMV. Other flavonoids were also tested for their inhibitory effect on D-glucose uptake. Among the tested quercetin glycosides, only the 4'-O-glucoside (Q4G) also inhibited Na-dependent glucose uptake into BBMV, whereas the 3-O-galactoside, the 3-O-glucorhamnoside and the aglycone quercetin itself were ineffective. Glucosides of some other flavonoid classes such as naringenin-7-O-glucoside, genistein-7-O-glucoside and cyanidin-3,5-O-diglucoside were ineffective as well. Thus, dietary quercetin monoglucosides, for example, Q3G and Q4G, have an impact on intestinal nutrient transporters such as SGLT1 and related systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available