3.8 Article

Role of phonon dispersion in lattice thermal conductivity modeling

Journal

JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME
Volume 126, Issue 3, Pages 376-380

Publisher

ASME
DOI: 10.1115/1.1723469

Keywords

conduction; heat transfer; modeling; properties

Ask authors/readers for more resources

The role of phonon dispersion in the prediction of the thermal conductivity of germanium between temperatures of 2 K and 1000 K is investigated using the Holland approach. If no dispersion is assumed, a large, nonphysical discontinuity is found in the transverse phonon relaxation time over the entire temperature range. However this effect is masked in the final prediction of the thermal conductivity by the use of fitting parameters. As the treatment of the dispersion is refined, the magnitude of the discontinuity is reduced. At the same time, discrepancies between the high temperature predictions and experimental data become apparent, indicating that the assumed heat transfer mechanisms (i.e., the relaxation time models) are not sufficient to account for the expected thermal transport. Molecular dynamics simulations may be the most suitable tool available for addressing this issue.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available