4.2 Article

Large-eddy simulation of coastal upwelling flow

Journal

ENVIRONMENTAL FLUID MECHANICS
Volume 4, Issue 2, Pages 197-223

Publisher

SPRINGER
DOI: 10.1023/B:EFMC.0000016610.05554.0f

Keywords

coastal upwelling; Coriolis force; instability; large-eddy simulation; parallel computing

Ask authors/readers for more resources

Large-eddy simulations were carried out to study laboratory-scale realizations of coastal upwelling in an annular rotating tank with a sloping bottom. A two-layer stratified fluid was set into rigid body motion with the tank and then driven by the relative rotation of a solid top lid. The simulation code developed in this work was a three-dimensional incompressible Navier-Stokes solver using the message passing interface. The simulation runs were performed on a distributed memory massively parallel computer, namely, the IBM SP2. The simulation results were able to reveal the evolution of the complex upwelling structures in detail. The results were used to compare with and to complement two relevant series of coastal upwelling experiments. A Rayleigh-Taylor type of instability took place in the top inversion layer due to the unstable stratification after establishment of the upwelling front. The primary upwelling front was unstable to azimuthal perturbations and developed large amplitude baroclinic waves. The frontal wave structure consists of cyclone/anticyclone pairs. Whether cyclonic eddies containing the lower-layer fluid pinch off from the front depends on the theta(*) value. The non-dimensional parameter theta(*) = g(1) h(0)/u(*)flambda(s), which was first introduced by Narimousa and Maxworthy, combines the effects of stratification, rotation and surface stress and can be used to characterize the upwelling flow field. Our studies show that the frontal instabilities are much more intense and the upwelling front itself displays strong unsteadiness and cyclonic eddies containing the lower-layer fluid pinch off from the front when theta(*) is significantly less than 5.8. For theta(*) = 5.8, the frontal instabilities are less intense and no pinched-off process is observed. To separate these regimes, a critical value of theta(*) of about 5.4 is consistent with Narimousa and Maxworthy's results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available