4.6 Article

Temperature dependence of magnetic properties of zinc and niobium doped strontium hexaferrite nanoparticles

Journal

JOURNAL OF APPLIED PHYSICS
Volume 95, Issue 11, Pages 6360-6363

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1711158

Keywords

-

Ask authors/readers for more resources

Zinc and niobium doped strontium hexaferrite nanoparticles, Sr(Zn0.7Nb0.3)(x)Fe12-xO19 (x=0-1.0), were fabricated using a sol-gel method for high density magnetic recording. The structure and temperature dependence of magnetic properties are investigated. The experiments show that strontium hexaferrite with small Zn and Nb substitutions still remains a hexagonal magnetoplumbite phase. The coercive force is reduced from 6.7 to about 2.3 kOe, while the values of saturation magnetization increased to 67-74 emu/g in the substitution range of x=0-1.0. This indicates that the saturation magnetization and coercivity of strontium hexaferrite nanoparticles can be held over a very wide range by an appropriate amount of Zn and Nb doping contents. Simultaneously, it is found that the doped strontium hexaferrite nanoparticles show a small positive temperature coefficient of coercivity. The substitution of Zn2+ and Nb4+ ions for Fe3+ ions also monitors the temperature dependence of magnetization and Curie temperature, and enhances thermal stability in the measured temperature range. This nanoparticle system is, thus, suitable for high-density recording. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available