4.6 Article

Conductance of molecular wires and transport calculations based on density-functional theory

Journal

PHYSICAL REVIEW B
Volume 69, Issue 23, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.235411

Keywords

-

Ask authors/readers for more resources

The experimental value for the zero bias conductance of organic molecules coupled by thiol-groups to gold electrodes tends to be much smaller than the theoretical result based on density functional theory (DFT) calculations, often by orders of magnitude. To address this puzzle we have analyzed the regime within which the approximations made in these calculations are valid. Our results suggest that a standard step in DFT based transport calculations, namely approximating the exchange-correlation potential in quasistatic nonequilibrium by its standard equilibrium expression, is not justified at weak coupling. We propose, that the breakdown of this approximation is the most important source for overestimating the width of the experimentally observed conductance peak and therefore also of the zero bias conductance. We present a numerical study on the conductance of an organic molecule that has recently been studied in experiments that fully agrees with this conclusion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available