4.4 Review

Visual cortex neurons of monkeys and cats: Temporal dynamics of the spatial frequency response function

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 91, Issue 6, Pages 2607-2627

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00858.2003

Keywords

-

Funding

  1. NEI NIH HHS [EY 02688] Funding Source: Medline

Ask authors/readers for more resources

We measured the responses of striate cortex neurons as a function of spatial frequency on a fine time scale, over the course of an interval that is comparable to the duration of a single fixation (200 ms). Stationary gratings were flashed on for 200 ms and then off for 300 ms; the responses were analyzed at sequential 1-ms intervals. We found that 1) the preferred spatial frequency shifts through time from low frequencies to high frequencies, 2) the latency of the response increases as a function of spatial frequency, and 3) the poststimulus time histograms (PSTHs) are relatively shape-invariant across spatial frequency. The dynamic shifts in preferred spatial frequency appear to be a simple consequence of the latency shifts and the transient nature of the PSTH. The effects of these dynamic shifts on the coding of spatial frequency information are examined within the context of several different temporal integration strategies, and pattern-detection performance is determined as a function of the interval of integration, following response onset. The findings are considered within the context of related investigations as well as a number of functional issues: motion selectivity in depth, coarse-to-fine processing, direction selectivity, latency as a code for stimulus attributes, and behavioral response latency. Finally, we demonstrate that the results are qualitatively consistent with a simple feedforward model, similar to the one originally proposed in 1962 by Hubel and Wiesel, that incorporates measured differences in the response latencies and the receptive field sizes of different lateral geniculate nucleus inputs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available