4.7 Article

Classical intermittency and the quantum Anderson transition -: art. no. 066216

Journal

PHYSICAL REVIEW E
Volume 69, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.69.066216

Keywords

-

Ask authors/readers for more resources

We investigate the properties of quantum systems whose classical counterpart presents intermittency. It is shown, by using recent semiclassical techniques, that the quantum spectral correlations of such systems are expressed in terms of the eigenvalues of an anomalous diffusion operator. For certain values of the parameters leading to ballistic diffusion and 1/f noise the spectral properties of our model show similarities with those of a disordered system at the Anderson transition. In Hamiltonian systems, intermittency is closely related to the presence of cantori in the classical phase space. We suggest, based on this relation, that our findings may be relevant for the description of the spectral correlations of Hamiltonians with a classical phase space homogeneously filled by cantori. Finally we discuss the extension of our results to higher dimensions and their relation to Anderson models with long-range hopping.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available