4.1 Article

A discipline of dynamic programming over sequence data

Journal

SCIENCE OF COMPUTER PROGRAMMING
Volume 51, Issue 3, Pages 215-263

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scico.2003.12.005

Keywords

-

Ask authors/readers for more resources

Dynamic programming is a classical programming technique, applicable in a wide variety ofdomains such as stochastic systems analysis, operations research, combinatorics of discrete structures, flow problems, parsing of ambiguous languages, and biosequence analysis. Little methodology has hitherto been available to guide the design of such algorithms. The matrix recurrences that typically describe a dynamic programming algorithm are difficult to construct, error-prone to implement, and, in nontrivial applications, almost impossible to debug completely. This article introduces a discipline designed to alleviate this problem. We describe an algebraic style of dynamic programming over sequence data. We define its formal framework, based on a combination of grammars and algebras, and including a formalization of Bellman's Principle. We suggest a language used for algorithm design on a convenient level of abstraction. We outline three ways of implementing this language, including an embedding in a lazy functional language. The workings of the new method are illustrated by a series of examples drawn from diverse areas of computer science. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available