4.4 Article

A heptosyltransferase mutant of Pasteurella multocida produces a truncated lipopolysaccharide structure and is attenuated in virulence

Journal

INFECTION AND IMMUNITY
Volume 72, Issue 6, Pages 3436-3443

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.72.6.3436-3443.2004

Keywords

-

Ask authors/readers for more resources

Pasteurella multocida is the causative agent of fowl cholera in birds. In a previous study using signature-tagged mutagenesis, we identified a mutant, AL251, which was attenuated for virulence in mice and in the natural chicken host. Sequence analysis indicated that AL251 had an insertional inactivation of the gene waaQ(PM), encoding a putative heptosyl transferase, required for the addition of heptose to lipopolysaccharide (LPS) (M. Harper, J. D. Boyce, I. W. Wilkie, and B. Adler, Infect. Immun. 71:5440-5446, 2003). In the present study, using mass spectrometry and nuclear magnetic resonance, we have confirmed the identity of the enzyme encoded by waaQ(PM) as a heptosyl transferase III and demonstrated that the predominant LPS glycoforms isolated from this mutant are severely truncated. Complementation experiments demonstrated that providing a functional waaQ(PM) gene in trans can restore both the LPS to its full length and growth in mice to wild-type levels. Furthermore, we have shown that mutant AL251 is unable to cause fowl cholera in chickens and that the attenuation observed is not due to increased serum sensitivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available