4.4 Article

Control of photosynthetic and high-light-responsive genes by the histidine kinase DspA: Negative and positive regulation and interactions between signal transduction pathways

Journal

JOURNAL OF BACTERIOLOGY
Volume 186, Issue 12, Pages 3882-3888

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.186.12.3882-3888.2004

Keywords

-

Categories

Ask authors/readers for more resources

We have deleted a gene for a sensor histidine kinase, dspA (or hik33), in the cyanobacterium Synechocystis sp. strain PCC6803. In low and moderate light, the mutant grew slowly under photoautotrophic conditions, with a doubling time of similar to40 h, and had severely reduced photosynthetic oxygen evolution. When the mutant was maintained in low or moderate light in the presence of glucose, its growth rate was only somewhat lower than that of wild-type cells. However, the mutant was light sensitive and rapidly died in high light. Furthermore, levels of many transcripts encoding genes associated with photosynthesis were altered in the mutant relative to wild-type Synechoeystis sp. strain PCC6803 both in low light and following exposure to high light. There was constitutive expression of several high-light-inducible genes, including hli, psbAIII, and gpx2; there was little increased accumulation of sodB mRNA in high light; and the cells failed to accumulate cpcBA and psaAB mRNAs in low light in the presence of glucose, although a normal decline in the levels of these mRNAs was observed during exposure to high light. These results suggest that DspA is involved in controlling sets of photosynthetic and high-light-responsive genes, either directly or indirectly. These and other results, some of which are presented in a companion paper (C.-J. Tu, J. Shrager, R. Burnap, B. L. Postier, and A. R. Grossman, J. Bacteriol. 186:3889-3902, 2004), suggest that DspA acts as a global regulator that helps coordinate cellular metabolism with growth limitations imposed by environmental conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available