4.7 Review

Occurrence, biochemistry and possible biotechnological application of the 3-hydroxypropionate cycle

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 64, Issue 5, Pages 605-610

Publisher

SPRINGER
DOI: 10.1007/s00253-003-1540-z

Keywords

-

Ask authors/readers for more resources

The 3-hydroxypropionate cycle, a pathway for autotrophic carbon dioxide fixation, is reviewed with special emphasis on the biochemistry of CO2 fixing enzymes in Acidianus brierleyi, a thermophilic and acidophilic archeon. In the 3-hydroxypropionate cycle, two enzymes, acetyl-CoA carboxylase and propionyl-CoA carboxylase, catalyze CO2 fixation. It has been shown in A. brierleyi, and subsequently in Metallosphaera sedula, that acetyl-CoA carboxylase is promiscuous, acting equally well on acetyl-CoA and propionyl-CoA. The subunit structure of the acyl-CoA carboxylase was shown to be alpha(4)beta(4)gamma(4). Gene cloning revealed that the genes encoding the three subunits are adjacent to each other. accC encodes the beta-subunit (59 kDa subunit, biotin carboxylase subunit), accB encodes the gamma-subunit (20 kDa subunit, biotin carboxyl carrier protein), and pccB encodes the alpha-subunit (62 kDa subunit, carboxyltransferase subunit). Sequence analyses showed that accC and accB are co-transcribed and that pccB is transcribed separately. Potential biotechnological applications for the 3-hydroxypropionate cycle are also presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available