4.2 Article

Convergence to the coalescent in populations of substantially varying size

Journal

JOURNAL OF APPLIED PROBABILITY
Volume 41, Issue 2, Pages 368-378

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1239/jap/1082999072

Keywords

coalescent; exchangeability; population genetics

Ask authors/readers for more resources

Kingman's classical theory of the coalescent uncovered the basic pattern of genealogical trees of random samples of individuals in large but time-constant populations. Time is viewed as being discrete and is identified with non-overlapping generations. Reproduction can be very generally taken as exchangeable (meaning that the labelling of individuals in each generation carries no significance). Recent generalisations have dealt with population sizes exhibiting given deterministic or (minor) random fluctuations. We consider population sizes which constitute it stationary Markov chain, explicitly allowing large fluctuations in short times. Convergence of the genealogical tree, as population size tends to infinity, towards the (time-scaled) coalescent is proved under minimal conditions. As a result, we obtain a formula for effective population size, generalising the well-known harmonic mean expression for effective size.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available