4.7 Article

Effect of partial replacement of dietary fish meal and oil by pumpkin kernel cake and rapeseed oil on fatty acid composition and metabolism in Arctic charr (Salvelinus alpinus)

Journal

AQUACULTURE
Volume 431, Issue -, Pages 85-91

Publisher

ELSEVIER
DOI: 10.1016/j.aquaculture.2014.03.039

Keywords

Fatty acids; Physiology; Tissue; Retention

Funding

  1. Austrian Ministry of Life [100837, BMLFUW-LE.1.3.2/0051-II/1/2012]

Ask authors/readers for more resources

The aim of this 15-month feeding study was to investigate the effects of more sustainable feeds on specific growth rate, fatty acid composition and metabolism of Arctic charr (Salvelinus alpinus). A control feed, formulated with fish meal and fish oil (F1), was compared with feeds where the marine ingredients were increasingly replaced by pumpkin kernel cake and rapeseed oil (feeds F2, F3, and F4). Arctic charr were randomly distributed into 12 tanks and fed one of the feeds in triplicate. The biomass of fish fed F1 and F2 diets was significantly higher compared to fish fed with diet F4 which was the highest replacement level. However, the dorsal and ventral muscle tissues had very similar total saturated, monounsaturated, and polyunsaturated fatty acid (PUFA) contents, irrespective of dietary supply. Although diets F3 and F4 contained 6-fold less fish oil than diets F1 and F2, fish fed diets F3 and F4 retained only 2-fold less highly desired omega-3 (n - 3) long-chain (LC)-PUFA in their dorsal and ventral muscle tissues. Incubating isolated hepatocytes with C-14-labelled alpha-linolenic acid (18:3n - 3) provided evidence that Arctic charr can bioconvert this essential dietary PUFA to n - 3 LC-PUFA, including docosahexaenoic acid. The results suggested that tissue fatty acid compositions in Arctic charr are dependent, not only on dietary fatty acid supply, but also on their ability for endogenous synthesis of n - 3 LC-PUFA. Finally, this long-term feeding study indicated that feeds containing pumpkinseed press cake and rapeseed oil produced fish with largely similar fatty acid composition to fish fed diets containing higher contents of fish meal and fish oil. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available