4.7 Article

Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit

Journal

PHYSIOLOGIA PLANTARUM
Volume 121, Issue 2, Pages 231-238

Publisher

WILEY
DOI: 10.1111/j.0031-9317.2004.00308.x

Keywords

-

Categories

Ask authors/readers for more resources

The role of APX (ascorbate peroxidase) in protection against oxidative stress was examined using transgenic tobacco plants. The full length cDNA, coding Arabidopsis thaliana L. APX fused downstream to the chloroplast transit sequence from A. thaliana glutathione reductase, was cloned into appropriate binary vector and mobilized into Agrobacterium tumefaciens C58C2. Leaf discs were infected with the Agrobacterium and cultured on medium supplied with kanamycin. The incorporation of the gene in tobacco genome was confirmed by Southern dot blot hybridization. Transgenic lines were generated, and the line Chl-APX5 shown to have 3.8-fold the level of APX activity in the wild-type plants. The isolated chloroplasts from this line showed higher APX activity. During early investigation, this line showed enhanced tolerance to the active oxygen-generating paraquat and sodium sulphite. The first generation of this line, also, showed enhanced tolerance to salt, PEG and water stresses, as determined by net photosynthesis. The present data indicate that overproducing the cytosolic APX in tobacco chloroplasts reduces the toxicity of H2O2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available