4.7 Article

Islet secretory defect in insulin receptor substrate 1 null mice is linked with reduced calcium signaling and expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)-2b and -3

Journal

DIABETES
Volume 53, Issue 6, Pages 1517-1525

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/diabetes.53.6.1517

Keywords

-

Funding

  1. NIDDK NIH HHS [R01 DK 55033, R01 DK 67536, R03 DK 66207, DK 09225, R01 DK 46960] Funding Source: Medline

Ask authors/readers for more resources

Mice with deletion of insulin receptor substrate (IRS)-1 (IRS-1 knockout [KO] mice) show mild insulin resistance and defective glucose-stimulated insulin secretion and reduced insulin synthesis. To further define the role of IRS-1 in islet function, we examined the insulin secretory defect in the knockouts using freshly isolated islets and primary beta-cells. IRS-1 KO beta-cells exhibited a significantly shorter increase in intracellular free Ca2+ concentration ([Ca2+](i)) than controls when briefly stimulated with glucose or glyceraldehyde and when L-arginine was used to potentiate the stimulatory effect of glucose. These changes were paralleled by a lower number of exocytotic events in the KO beta-cells in response to the same secretagogues, indicating reduced insulin secretion. Furthermore, the normal oscillations in intracellular Ca2+ and O-2 consumption after glucose stimulation were dampened in freshly isolated KO islets. Semiquantitative RT-PCR showed a dramatically reduced islet expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)-2b and -3 in the mutants. These data provide evidence that IRS-1 modulation of insulin secretion is associated with Ca2+ signaling and expression of SERCA-2b and -3 genes in pancreatic islets and provides a direct link between insulin resistance and defective insulin secretion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available