3.8 Article Proceedings Paper

Dosimetry and toxicology of ultrafine particles

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/0894268041457147

Keywords

ultrafine particles; inhalation; ambient aerosols; PM2.5; combustion aerosols; health effects; translocation; inflammation

Ask authors/readers for more resources

While epidemiological studies indicate an association between adverse health effects and ambient ultrafine particle concentrations in susceptible individuals, toxicological studies aim to identify mechanisms which are causal for the gradual transition from the physiological status towards patho-physiological disease. Impressive progress has been made in recent years when objectives changed from classical tests like lung function, etc. to endpoints comprising of particle induced oxidative stress, cell signaling and activation, release of mediators initiating inflammatory processes not only in the respiratory tract but also in the cardio-vascular system. Particularly, the large surface area of ultrafine particles provides a unique interface for catalytic reactions of surface-located agents with biological targets like proteins, cells, etc. However, toxicological studies are hampered by a number of immanent complications when simulating long-term exposure of humans in urban environments with inherited and/or acquired susceptibility (e.g., acute exposure studies at high concentrations either in human subjects or animal models). Yet, based on a conservative estimate results available begin to show an adverse health risk for susceptible individuals and support the epidemiological evidence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available