4.7 Article

Modular product design with grouping genetic algorithm - a case study

Journal

COMPUTERS & INDUSTRIAL ENGINEERING
Volume 46, Issue 3, Pages 443-460

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cie.2004.01.007

Keywords

modular product design; non-linear programming; grouping genetic algorithm

Ask authors/readers for more resources

Modular products are products that fulfill various functions through the combination of distinct modules. These detachable modules are constructed both according to the maximum physical and functional relations among components and maximizing the similarity of specifically modular driving forces. Accordingly, a non-linear programming is proposed to identify separable modules and simultaneously optimize the number of modules. This paper presents a systematic approach to accomplish modular product design in four major phases. Phase 1 is by means of functional and physical interaction analysis to format a component-to-component correlation matrix. Phase 2 is the exploration of design requirements to evaluate the relative importance of each modular driver. In phase 3, non-linear programming is used to formulate the objective function. In the final phase, a heuristic grouping genetic algorithm is adopted to search for the optimal or near-optimal modular architecture. This process and its application are illustrated by a real case of an electrical consumer product provided by an Original Design Manufacturer. The results demonstrate that the designer could direct a new approach to establish product modules according to the relative importance of modular drivers and the interaction among components. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available