4.4 Article

Enhanced long-term potentiation during aging is masked by processes involving intracellular calcium stores

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 91, Issue 6, Pages 2437-2444

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.01148.2003

Keywords

-

Funding

  1. NIA NIH HHS [AG 14979] Funding Source: Medline

Ask authors/readers for more resources

The contribution of Ca2+ release from intracellular Ca2+ stores (ICS) for regulation of synaptic plasticity thresholds during aging was investigated in hippocampal slices of old (22-24 mo) and young adult (5-8 mo) male Fischer 344 rats. Inhibition of Ca2+-induced Ca2+ release by thapsigargin, cyclopiazonic acid (CPA), or ryanodine during pattern stimulation near the threshold for synaptic modification (5 Hz, 900 pulses) selectively induced long-term potentiation (LTP) to CA1 Schaffer collateral synapses of old rats. Increased synaptic strength was specific to test pathways and blocked by AP-5. Intracellular recordings demonstrated that ICS plays a role in the augmentation of the afterhyperpolarization (AHP) in old rats. The decrease in the AHP by ICS inhibition was reversed by the L-channel agonist, Bay K8644. Under conditions of ICS inhibition and a Bay K8644-mediated enhancement of the AHP, pattern stimulation failed to induce LTP, consistent with the idea that the AHP amplitude shapes the threshold for LTP induction. Finally, ICS inhibition was associated with an increase in the N-methyl-D-aspartate ( NMDA) receptor component of synaptic transmission in old animals. This increase in the synaptic response was blocked by the calcineurin inhibitor FK506. The results reveal an age-related increase in susceptibility to LTP-induction that is normally inhibited by ICS and suggest that the age-related shift in Ca2+ regulation and Ca2+-dependent synaptic plasticity is coupled to changes in cell excitability and NMDA receptor function through ICS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available