4.6 Article

Ferroelectric domain structures in SrBi2Nb2O9 epitaxial thin films:: Electron microscopy and phase-field simulations

Journal

JOURNAL OF APPLIED PHYSICS
Volume 95, Issue 11, Pages 6332-6340

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1707211

Keywords

-

Ask authors/readers for more resources

Ferroelectric domain structures of (001)SrBi2Nb2O9 epitaxial films, investigated using both transmission electron microscopy and phase-field simulations, are reported. Experiment and numerical simulation both reveal that the domain structures consist of irregularly shaped domains with curved domain walls. It is shown that the elastic contribution to domain structures can be neglected in SrBi2Nb2O9 due to its small ferroelastic distortion, less than 0.0018%. Two-beam dark-field imaging using reflections unique to domains of each of the two 90degrees polarization axes reveal the domain structure. Phase-field simulation is based on the elastic and electrostatic solutions obtained for thin films under different mechanical and electric boundary conditions. The effects of ferroelastic distortion and dielectric constant on ferroelectric domains are systematically analyzed. It is demonstrated that electrostatic interactions which favor straight domain walls are not sufficient to overcome the domain wall energy which favors curved domains in SrBi2Nb2O9. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available