4.7 Article

Effect of working fluids on organic Rankine cycle for waste heat recovery

Journal

ENERGY
Volume 29, Issue 8, Pages 1207-1217

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2004.01.004

Keywords

-

Ask authors/readers for more resources

This study presents an analysis of the performance of organic Rankine cycle (ORC) subjected to the influence of working fluids. The effects of various working fluids on the thermal efficiency and on the total heat-recovery efficiency have been investigated. It is found that the presence of hydrogen bond in Certain molecules such as water, ammonia, and ethanol may result in wet fluid conditions due to larger vaporizing enthalpy, and is regarded as inappropriate for ORC systems. The calculated results reveal that the thermal efficiency for various working fluids is a weak function of the critical temperature. The maximum value of the total heat-recovery efficiency occurs at the appropriate evaporating temperature between the inlet temperature of waste heat and the condensing temperature. In addition, the maximum value of total heat-recovery efficiency increases with the increase of the inlet temperature of the waste heat source and decreases it by using working fluids having lower critical temperature. Analytical results using a constant waste heat temperature or based on thermal efficiency may result in considerable deviation of system design relative to the varying temperature conditions of the actual waste heat recovery and is regarded as inappropriate. (C) 2004 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available