4.8 Article

P27kip1 down-regulation is associated with trastuzumab resistance in breast cancer cells

Journal

CANCER RESEARCH
Volume 64, Issue 11, Pages 3981-3986

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-03-3900

Keywords

-

Categories

Funding

  1. NCI NIH HHS [K23 CA82119, P01 CA099031] Funding Source: Medline

Ask authors/readers for more resources

Trastuzumab (Herceptin) is a recombinant humanized monoclonal antibody directed against HER-2. The objective response rate to trastuzumab monotherapy is 12-34% for a median duration of 9 months, by which point most patients become resistant to treatment. We created two trastuzumab-resistant (TR) pools from the SKBR3 HER-2-overexpressing breast cancer cell line to study the mechanisms by which breast cancer cells escape trastuzumab-mediated growth inhibition. Both pools maintained her-2 gene amplification and protein overexpression. Resistant cells demonstrated a higher S-phase fraction by flow cytometry and a faster doubling time of 24-36 h compared with 72 h for parental cells. The cyclin-dependent kinase inhibitor p27(kip1) was decreased in TR cells, and cyclin-dependent kinase 2 activity was increased. Importantly, exogenous addition of P27(kip1) increased trastuzumab sensitivity. Additionally, resistant cells displayed heightened sensitivity to the proteasome inhibitor MG132, which induced p27(kip1) expression. Thus, we propose that trastuzumab resistance may be associated with decreased p27(kip1) levels and may be susceptible to treatments that induce p27(kip1) expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available