4.4 Article

Induction of morphological and electrophysiological changes in hamster cornea after in vitro interaction with trophozoites of Acanthamoeba spp.

Journal

INFECTION AND IMMUNITY
Volume 72, Issue 6, Pages 3245-3251

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.72.6.3245-3251.2004

Keywords

-

Ask authors/readers for more resources

Acanthamoeba castellani and Acanthamoeba polyphaga are free-living amebae that cause keratitis and granulomatous encephalitis in humans. We have analyzed the early morphological and electrophysiological changes occurring during the in vitro interaction of cultured amebae with intact or physically damaged corneas obtained from hamsters. Both species of Acanthamoeba produced similar cytopathic changes, as seen by light microscopy and scanning electron microscopy. After adhesion to the epithelial surface, trophozoites formed clumps and migrated toward the cell borders, causing the separation of adjacent cells at 1 h of coculture. At later stages (2 to 4 h), some amebae were found under desquamating epithelia] cells whereas others were seen associated with damaged cells or forming amebostome-like structures to ingest detached epithelial cells. Control corneas incubated in culture medium conditioned with amebae showed a cytoplasmic vacuolization and blurring of the epithelial-stromal junction. The early stages of corneal epithelial damage caused by amebae were also analyzed by measuring the transepithelial resistance changes in corneas mounted in Ussing chambers. Both species of Acanthamoeba caused a rapid decrease in electrical resistance. The present observations demonstrate that under in vitro conditions, Acanthamoeba trophozoites rapidly cause significant damage to the corneal epithelium. Furthermore, in our experimental model, previous physical damage to the corneas was not a prerequisite for the development of amebic corneal ulcerations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available