4.5 Article

Field decrystallization and structural modifications of highly doped silicon in a 2.45-GHz microwave single-mode cavity

Journal

JOURNAL OF MATERIALS RESEARCH
Volume 19, Issue 6, Pages 1599-1602

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1557/JMR.2004.0223

Keywords

-

Ask authors/readers for more resources

Highly doped n-type silicon powder responds aggressively to a 2.45-GHz microwave E-field, whereas it remains unperturbed in the H-field. In the E-field, after about 30 s of treatment, the silicon powder attained submelting temperatures and thus coagulated to a bulk solid piece. X-ray diffraction analysis of the surface and the cross section of this solid material failed to show any detectable peaks, ascertaining the fact that the material had decrystallized. The Raman spectra of the material had broad and shallow peaks quite different from the thin, sharp lines exhibited by Si wafer. It appears that the E-field treatment has considerably distorted the lattice structure creating lattice strains throughout the sample. These lattice strains were relieved by grinding (recrystallized).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available