4.4 Article

Preparation and reactivity studies of synthetic microperoxidases containing b-type heme

Journal

JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY
Volume 9, Issue 4, Pages 385-395

Publisher

SPRINGER
DOI: 10.1007/s00775-004-0532-5

Keywords

peroxidase; protoporphyrin IX; peptide; catalysis

Ask authors/readers for more resources

In order to create a heme environment that permits biomimicry of heme-containing peroxidases, a number of new hemin-peptide complexes-hemin-2(18)-glycyl-L-histidine methyl ester (HGH), hemin-2(18)-glycyl-glycyl-L-histidine methyl ester (HGGH), and hemin-2,18-bis(glycyl-glycyl-L-histidine methyl ester) (H2GGH)-have been prepared by condensation of glycyl-L-histidine methyl ester or glycyl-glycyl-L-histidine methyl ester with the propionic side chains of hemin. Characterization by means of UV/vis- and H-1 NMR spectroscopy as well as cyclic- and differential pulse voltammetry indicates the formation of five-coordinate complexes in the case of HGH and HGGH, with histidine as an axial ligand. In the case of H2GGH, a six-coordinate complex with both imidazoles coordinated to the iron center appears to be formed. However, H-1 NMR of H2GGH reveals the existence of an equilibrium between low-spin six-coordinate and high-spin five-coordinate species in solution. The catalytic activity of the hemin-peptide complexes towards several organic substrates, such as p-cresol, L-tyrosine methyl ester, and ABTS, has been investigated. It was found that not only the five-coordinate HGH and HGGH complexes, but also the six-coordinate H2GGH, catalyze the oxidation of substrates by H2O2. The longer and less strained peptide arm provides the HGGH complex with a slightly higher catalytic efficiency, as compared with HGH, due to formation of more stable intermediate complexes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available