4.8 Article

The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0400146101

Keywords

-

Ask authors/readers for more resources

Little is known about the mutational fitness effects associated with single-nucleotide substitutions on RNA viral genomes. Here, we used site-directed mutagenesis to create 91 single mutant clones of vesicular stomatitis virus derived from a common ancestral cDNA and performed competition experiments to measure the relative fitness of each mutant. The distribution of nonlethal deleterious effects was highly skewed and had a long, flat tail. As expected, fitness effects depended on whether mutations were chosen at random or reproduced previously described ones. The effect of random deleterious mutations was well described by a log-normal distribution, with -19% reduction of average fitness; the effects distribution of preobserved deleterious mutations was better explained by a 6 model. The fit of both models was improved when combined with a uniform distribution. Up to 40% of random mutations were lethal. The proportion of beneficial mutations was unexpectedly high. Beneficial effects followed a gamma distribution, with expected fitness increases of 1% for random mutations and 5% for preobserved mutations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available