4.7 Article

Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells

Journal

EXPERIMENTAL NEUROLOGY
Volume 187, Issue 2, Pages 319-328

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2004.01.027

Keywords

adipose-derived adult stromal cell; mesenchymal stein cell; neural differentiation

Categories

Ask authors/readers for more resources

Neural tissue has limited capacity for intrinsic repair after injury, and the identification of alternate sources of neuronal stein cells has broad clinical potential. Preliminary studies have demonstrated that adipose-derived adult stromal (ADAS) cells are capable of differentiating into mesenchymal and non-mesenchymal cells in vitro, including cells with select characteristics of neuronal/filial tissue. In this study, we extended these observations to test the hypothesis that murine (mu) ADAS cells can be induced to exhibit characteristics of neuronal and glial tissue by exposure to a cocktail of induction agents. We characterized the differentiation of muADAS cells in vitro using immunohistochemistry and immunoblotting, and examined whether these cells respond to the glutamate agonist N-methyl-D-aspartate (NMDA). We found that induced muADAS cells express proteins indicative of neuronal/filial cells, including nestin, GFAP, S-100, NeuN, MAP2, tau, and beta-III tubulin. Induced muADAS cells express gamma-aminobutyric acid (GABA), the NR-1 and NR-2 subunits of the glutamate receptor, GAP-43, synapsin 1, and voltage-gated calcium channels. Finally, induced muADAS cells demonstrate decreased viability in response to NMDA. These findings suggest that muADAS cells can be induced to exhibit several phenotypic, morphologic, and excitotoxic characteristics consistent with developing neuronal and glial tissue. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available