4.5 Article

MCP-1-dependent signaling in CCR2-/- aortic smooth muscle cells

Journal

JOURNAL OF LEUKOCYTE BIOLOGY
Volume 75, Issue 6, Pages 1079-1085

Publisher

WILEY
DOI: 10.1189/jlb.0903421

Keywords

chemokine; tissue factor; vascular smooth muscle; receptors; genetically altered mice; kinases

Funding

  1. NHLBI NIH HHS [HL61818, HL63894-01, HL73458, HL52773-07, HL29019] Funding Source: Medline
  2. NIGMS NIH HHS [T32GM07288] Funding Source: Medline

Ask authors/readers for more resources

Monocyte chemoattractant protein-1 (MCP-1, CCL2) is a mediator of inflammation that has been implicated in the pathogenesis of a wide variety of human diseases. CCR2, a heterotrimeric G-coupled receptor, is the only known receptor that functions at physiologic concentrations of MCP-1. Despite the importance of CCR2 in mediating MCP-1 responses, several recent studies have suggested that there may be another functional MCP-1 receptor. Using arterial smooth muscle cells (SMC) from CCR2(-/-) mice, we demonstrate that MCP-1 induces tissue-factor activity at physiologic concentrations. The induction of tissue factor by MCP-1 is blocked by pertussis toxin and 1,2-bis(O-aminophenyl-ethane-ethan)-N,N,N',N'-tetraacetic acid-acetoxymethyl ester, suggesting that signal transduction through the alternative receptor is G(alphai)-coupled and dependent on mobilization of intracellular Ca2+. MCP-1 induces a time- and concentration-dependent phosphorylation of the mitogen-activated protein kinases p42/44. The induction of tissue factor activity by MCP-1 is blocked by PD98059, an inhibitor of p42/44 activation, but not by SB203580, a selective p38 inhibitor. These data establish that SMC possess an alternative MCP-1 receptor that signals at concentrations of MCP-1 that are similar to those that activate CCR2. This alternative receptor may be important in mediating some of the effects of MCP-1 in atherosclerotic arteries and in other inflammatory processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available