4.5 Article

Endothelium-dependent responses in human isolated thyroid arteries from donors

Journal

JOURNAL OF ENDOCRINOLOGY
Volume 181, Issue 3, Pages 379-384

Publisher

BIOSCIENTIFICA LTD
DOI: 10.1677/joe.0.1810379

Keywords

-

Ask authors/readers for more resources

The functional properties of the endothelium of human thyroid arteries remain unexplored. We investigated the intervention of nitric oxide (NO), prostacyclin (PGI(2)) and endothelium-derived hyperpolarizing factor (EDHF) in the responses to acetylcholine and noradrenaline in isolated thyroid arteries obtained from multi-organ donors. Artery rings were suspended in organ baths for isometric recording of tension. The contribution of NO, PGI(2) and EDHF to endothelium-dependent relaxation was determined by the inhibitory effects of N-G-monomethyl-L-arginine (L-NMMA), indomethacin, and K+ channel inhibitors respectively. Acetylcholine induced concentration-dependent relaxation; this effect was not modified by indomethacin and was only partly reduced by L-NMMA, but was abolished in endothelium-denuded rings. The relaxation resistant to indomethacin and L-NMMA was abolished by using either apamin combined with charbydotoxin, ouabain plus barium, or a high-K+ solution. Noradrenaline induced concentration-dependent contractions which were of greater magnitude in arteries denuded of endothelium or in the presence of L-NMMA. In conclusion, the results indicate that in human thyroid arteries the endothelium significantly modulates responses to acetylcholine and noradrenaline through the release of NO and EDHF. EDHF plays a dominant role in acetylcholine-induced relaxation through activation of Ca2+-activated K+ channels, inwardly rectifying K+ channels and Na+-K+-ATPase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available