4.7 Article

Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion

Journal

APPLIED THERMAL ENGINEERING
Volume 144, Issue -, Pages 424-436

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2018.08.082

Keywords

Reactivity controlled compression ignition; Dual-fuel combustion; Efficiency; Internal combustion engine; Ethanol

Funding

  1. FEDER
  2. Spanish Ministerio de Economia y Competitividad [TRA2017-87694-R]

Ask authors/readers for more resources

Reactivity controlled compression ignition (RCCI) combustion has demonstrated to be able to avoid the NOx-soot trade-off appearing during conventional diesel combustion (CDC), with similar or better thermal efficiency than CDC under a wide range of operating conditions. The high thermal efficiency of RCCI is explained by the combination of a short-duration and well-phased combustion process, which maximizes the fuel-to-work conversion efficiency, together with relatively low combustion temperatures, which increases the specific heat ratio during expansion and reduces thermal gradients for heat transfer losses. The objective of this work is to study the RCCI heat transfer characteristics and compare them to those of the CDC regime. To do this, a single-cylinder light-duty research engine instrumented with 25K-type thermocouples distributed among the cylinder head and cylinder liner is used. First, the influence of some engine settings on the RCCI heat transfer phenomenon is explored by means of parametric sweeps. Later, the RCCI heat transfer characteristics are compared for two different low reactivity fuels (LRF), gasoline and E85. Finally, the heat transfer characteristics of RCCI and CDC combustion regimes are compared at some representative operating points in matched load conditions. The results show that both LRF tested are suitable to be used in RCCI giving similar results in terms of energy usage. Moreover, the ability of RCCI combustion in exploiting the fuel energy to extract useful work is demonstrated, reducing by 13% the heat transfer versus CDC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available