4.7 Article

CYP175A1 from Thermus thermophilus HB27, the first β-carotene hydroxylase of the P450 superfamily

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 64, Issue 5, Pages 671-674

Publisher

SPRINGER
DOI: 10.1007/s00253-003-1529-7

Keywords

-

Ask authors/readers for more resources

The biological function of thermostable P450 monooxygenase CYP175A1 from Thermus thermophilus HB27 was studied by functional complementation in Escherichia coli. The gene product of CYP175A1 added hydroxyl groups to both beta rings of beta-carotene to form zeaxanthin (beta,beta-carotene-3,3'-diol) in E. coli, which produces beta-carotene due to the Erwinia uredovora carotenoid biosynthesis genes. In addition, spectroscopic methods revealed that E. coli carrying CYP175A1 and the cDNA of the Haematococcus pluvialis carotene ketolase was able to synthesise hydroxyechinenone. The predicted amino acid sequence of the enzyme from T. thermophilus does not show substantial similarity with other known beta-carotene hydroxylases, but 41% with the cytochrome P450 monooxygenase from Bacillus megaterium (CYP102A1, P450 BM3). It is concluded that CYP175 A1 represents a new type of beta-carotene hydroxylase of the P450 superfamily.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available