4.4 Article

Comparative analysis of EspF from enteropathogenic and enterohemorrhagic Escherichia coli in alteration of epithelial barrier function

Journal

INFECTION AND IMMUNITY
Volume 72, Issue 6, Pages 3218-3227

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.72.6.3218-3227.2004

Keywords

-

Funding

  1. NIDDK NIH HHS [R56 DK050694, KO-1 DK63030, DK58964, R01 DK050694, K01 DK063030, DK50694, R01 DK058964] Funding Source: Medline

Ask authors/readers for more resources

Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are related intestinal pathogens that harbor highly similar pathogenicity islands known as the locus of enterocyte effacement (LEE). Despite their genetic similarity, these two pathogens disrupt epithelial tight junction barrier function with distinct kinetics. EHEC-induced reduction in transepithelial electrical resistance (TER), a measure of barrier function disruption, is significantly slower and more modest in comparison to that induced by EPEC. The variation in bacterial adherence only partially accounted for these differences. The LEE-encoded effector protein EspF has been shown to be critical for EPEC-induced alterations in TER. EspF from both EPEC and EHEC is expressed and secreted upon growth in tissue culture medium. The mutation of EHEC cesF suggested that the optimal expression and secretion of EHEC EspF required its chaperone CesF, as has been shown for EPEC. In contrast to EPEC espF and cesF, mutation of the corresponding EHEC homologs did not dramatically alter the decrease in TER. These differences could possibly be explained by the presence of additional espF-like sequences (designated U- and M-espF, where the letter designations refer to the specific cryptic prophage sequences on the EHEC chromosome closest to the respective genes) in EHEC. Reverse transcription-PCR analyses revealed coordinate regulation of EHEC U-espF and the LEE-encoded espF, with enhanced expression in bacteria grown in Dulbecco-Vogt modified Eagle's medium compared to bacteria grown in Luria broth. Both EHEC espF and U-espF complemented an EPEC espF deletion strain for barrier function alteration. The overexpression of U-espF, but not espF, in wild-type EHEC potentiated the TER response. These studies reveal further similarities and differences in the pathogenesis of EPEC and EHEC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available