4.5 Article

Viscoacoustic wave form inversion of transmission data for velocity and attenuation

Journal

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
Volume 115, Issue 6, Pages 3059-3067

Publisher

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.1710878

Keywords

-

Ask authors/readers for more resources

This study investigates the performance of a frequency domain viscoacoustic full wave form nonlinear inversion to obtain high resolution images of velocity and attenuation. An efficient frequency domain implementation is applied that consists of performing a series of single frequency inversions sweeping from low to high frequency. A cascaded inversion was adopted in which the real part of the velocity is first imaged using the phase information, then the quality factor (Q) is imaged using the amplitude information. Tests with synthetic data indicate that our approach yielded better images than the simultaneous determination of the real and imaginary parts of the complex velocity. The method is applied to laboratory data obtained in a water tank with suspended acrylic bars. Broadband 200 kHz data are obtained for a crosshole configuration with a computer-controlled scanning-system and piezofilm source and detector. The velocity image produced by the full wave form inversion is compared to a curved ray travel time tomography velocity, image, and was observed to possess higher resolution and more precise locations of the acrylic bars. The Q image shows a lower resolution than the velocity image, but recovers the correct Q for acrylic. This method can be applied for geophysical applications targeted to soil, unconsolidated rocks, and marine sediments and also nondestructive evaluation and medical applications. (C) 2004 Acoustical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available