4.6 Article

The team Keck treasury redshift survey of the GOODS-North field

Journal

ASTRONOMICAL JOURNAL
Volume 127, Issue 6, Pages 3121-3136

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/420999

Keywords

galaxies : distances and redshifts; galaxies : photometry

Ask authors/readers for more resources

We report the results of an extensive imaging and spectroscopic survey in the Great Observatories Origins Deep Survey (GOODS)-North field completed using DEIMOS on the Keck II telescope. Observations of 2018 targets in a magnitude-limited sample of 2911 objects to R-AB = 24.4 yield secure redshifts for a sample of 1440 galaxies and active galactic nuclei (AGNs) plus 96 stars. In addition to redshifts and associated quality assessments, our catalog also includes photometric and astrometric measurements for all targets detected in our R-band imaging survey of the GOODS-North region. We investigate various sources of incompleteness and find the redshift catalog to be 53% complete at its limiting magnitude. The median redshift of z = 0.65 is lower than in similar deep surveys because we did not select against low-redshift targets. Comparison with other redshift surveys in the same field, including a complementary Hawaii-led DEIMOS survey, establishes that our velocity uncertainties are as low as sigma approximate to 40 km s(-1) for red galaxies and that our redshift confidence assessments are accurate. The distributions of rest-frame magnitudes and colors among the sample agree well with model predictions out to and beyond z = 1. We will release all survey data, including extracted one-dimensional and sky-subtracted two-dimensional spectra, thus providing a sizable and homogeneous database for the GOODS-North field, which will enable studies of large-scale structure, spectral indices, internal galaxy kinematics, and the predictive capabilities of photometric redshifts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available