4.8 Article

Fuzzy identification using fuzzy neural networks with stable learning algorithms

Journal

IEEE TRANSACTIONS ON FUZZY SYSTEMS
Volume 12, Issue 3, Pages 411-420

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TFUZZ.2004.825067

Keywords

fuzzy neural networks; identification; stability

Ask authors/readers for more resources

In general, fuzzy neural networks cannot match nonlinear systems exactly. Unmodeled dynamic leads parameters drift and even instability problem. According to system identification theory, robust modification terms must be included in order to guarantee Lyapunov stability. This paper suggests new learning laws for Mamdani and Takagi-Sugeno-Kang type fuzzy neural networks based on input-to-state stability approach. The new learning schemes employ a time-varying learning rate that is determined from input-output data and model structure. Stable learning algorithms for the premise and the consequence parts of fuzzy rules are proposed. The calculation of the learning rate does not need any prior information such as estimation of the modeling error bounds. This offer an advantage compared to other techniques using robust modification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available