4.8 Article

Expression and function of HD2-type histone deacetylases in Arabidopsis development

Journal

PLANT JOURNAL
Volume 38, Issue 5, Pages 715-724

Publisher

WILEY
DOI: 10.1111/j.1365-313X.2004.02083.x

Keywords

histone deacetylase; HD2; gene repression; development; Arabidopsis

Categories

Ask authors/readers for more resources

HD2 (histone deacetylase) proteins are plant-specific histone deacetylases (HDACs). The Arabidopsis genome contains four HD2 genes, namely HD2A, HD2B, HD2C, and HD2D. We have previously demonstrated that HD2A, HD2B, and HD2C can repress transcription directly by targeting to promoters in planta. Here, we show that the N-terminal conserved motif (EFWG) and histidine 25 (H25), a potential catalytic residue, were important for the gene repression activity of HD2A. In situ hybridization indicated that HD2A, HD2B, and HD2C were expressed in ovules, embryos, shoot apical meristems, and primary leaves. Furthermore, all three genes were strongly induced during the process of somatic embryogenesis. HD2D mRNA was only detected in the stems and flowers with young siliques and may have adopted different functions. Using green fluorescent protein (GFP) fusions, we demonstrated that HD2A, HD2B, and HD2C accumulated in the nuclei of Arabidopsis cells. Overexpression of 35S::GFP-HD2A in transgenic Arabidopsis plants generated pleiotropic developmental abnormalities, including abnormal leaves, delayed flowering, and aborted seed development. The data showed that normal pattern of HD2 expression was essential for normal plant development and that HD2A, HD2B, and HD2C may be needed for embryogenesis and embryo development. Reverse transcriptase (RT)-PCR analysis revealed that a number of genes involved in seed development and maturation were repressed in the 35S::GFP-HD2A plants, supporting a role of HD2A in the regulation of gene expression during seed development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available