4.7 Article

Ions in water: The microscopic structure of concentrated NaOH solutions

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 120, Issue 21, Pages 10154-10162

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1705572

Keywords

-

Ask authors/readers for more resources

A neutron diffraction experiment with isotopic H/D substitution on four concentrated NaOH/H2O solutions is presented. The full set of partial structure factors is extracted, by combining the diffraction data with a Monte Carlo simulation. These allow to investigate both the changes of the water structure in the presence of ions and their solvation shells. It is found that the interaction with the solute affects the tetrahedral network of hydrogen bonded water molecules in a manner similar to the application of high pressure to pure water. The solvation shell of the OH- ions has an almost concentration independent structure, although with concentration dependent coordination numbers. The hydrogen site coordinates a water molecule through a weak bond, while the oxygen site forms strong hydrogen bonds with a number of molecules that is on the average very close to four at the higher water concentrations and decreases to about three at the lowest one. The competition between hydrogen bond interaction and Coulomb forces in determining the orientation of water molecules within the cation solvation shell is visible in the behavior of the g(NaHw)(r) function.(C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available