4.7 Article

Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator

Journal

APPLIED THERMAL ENGINEERING
Volume 52, Issue 1, Pages 8-16

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2012.11.013

Keywords

Overall heat transfer coefficient; Automobile radiator; Nanoparticle; Copper oxide; Iron oxide; Experimental stability

Funding

  1. Islamic Azad University, Mahshahr

Ask authors/readers for more resources

Heat transfer of coolant flow through the automobile radiators is of great importance for the optimization of fuel consumption. In this study, the heat transfer performance of the automobile radiator is evaluated experimentally by calculating the overall heat transfer coefficient (U) according to the conventional epsilon-NTU technique. Copper oxide (CuO) and Iron oxide (Fe2O3) nanoparticles are added to the water at three concentrations 0.15, 0.4, and 0.65 vol.% with considering the best pH for longer stability. In these experiments, the liquid side Reynolds number is varied in the range of 50-1000 and the inlet liquid to the radiator has a constant temperature which is changed at 50, 65 and 80 degrees C. The ambient air for cooling of the hot liquid is used at constant temperature and the air Reynolds number is varied between 500 and 700. However, the effects of these variables on the overall heat transfer coefficient are deeply investigated. Results demonstrate that both nanofluids show greater overall heat transfer coefficient in comparison with water up to 9%. Furthermore, increasing the nanoparticle concentration, air velocity, and nanofluid velocity enhances the overall heat transfer coefficient. In contrast, increasing the nanofluid inlet temperature, lower overall heat transfer coefficient was recorded. (c) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available