4.8 Article

TULA: an SH3- and UBA-containing protein that binds to c-Cbl and ubiquitin

Journal

ONCOGENE
Volume 23, Issue 27, Pages 4690-4706

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1207627

Keywords

TULA; c-Cbl; UBA; SH3; ubiquitin; protein tyrosine kinase

Funding

  1. NCI NIH HHS [CA78499] Funding Source: Medline

Ask authors/readers for more resources

Downregulation of protein tyrosine kinases is a major function of the multidomain protein c-Cbl. This effect of c-Cbl is critical for both negative regulation of normal physiological stimuli and suppression of cellular transformation. In spite of the apparent importance of these effects of c-Cbl, their own regulation is poorly understood. To search for possible novel regulators of c-Cbl, we purified a number of c-Cbl-associated proteins by affinity chromatography and identified them by mass spectrometry. Among them, we identified the UBA- and SH3-containing protein T-cell Ubiquitin LigAnd (TULA), which can also bind to ubiquitin. Functional studies in a model system based on co-expression of TULA, c-Cbl, and EGF receptor in 293T cells demonstrate that TULA is capable of inhibiting c-Cbl-mediated downregulation of EGF receptor. Furthermore, modulation of TULA concentration in Jurkat T-lymphoblastoid cells demonstrates that TULA upregulates the activity of both Zap kinase and NF-AT transcription factor. Therefore, our study indicates that TULA counters the inhibitory effect of c-Cbl on protein tyrosine kinases and, thus, may be involved in the regulation of biological effects of c-Cbl. Finally, our results suggest that TULA-mediated inhibition of the effects of c-Cbl on protein tyrosine kinases is caused by TULA-induced ubiquitylation and degradation of c-Cbl.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available