4.6 Article

The path of the DNA along the dimer interface of topoisomerase II

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 24, Pages 25783-25788

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M402555200

Keywords

-

Ask authors/readers for more resources

The eukaryotic DNA topoisomerase II is a dyadic enzyme that, upon ATP binding, transports one duplex DNA (T-segment) through a transient double-stranded break in another (G-segment). The path of the T-segment involves the sequential crossing of three gates along the dimer interface: the entrance or N-gate, the DNA gate, and the exit or C-gate. Coordination among these gates is critical for dimer stability and the prevention of chromosome damage. This study examines DNA transactions by yeast topoisomerase II derivatives defective in gate function. The results indicate that, although the N-gate is not required for G-segment cleavage, the DNA gate per se is not able to widen unless ATP binds to the N-gate. Next, a captured T-segment cannot be held in the inter-domainal region between the N-gate and the DNA gate. Finally, the G-segment can be religated while a T-segment is held in the central cavity of the enzyme between the DNA gate and the C-gate. These quaternary couplings for gate opening and closing suggest that topoisomerase II ensures a transient DNA gating state, during which dimer interface contacts are maximized and backtracking of the transported DNA is minimized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available