4.6 Article

Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 24, Pages 25665-25672

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M311515200

Keywords

-

Ask authors/readers for more resources

The vanilloid receptor-1 (TRPV1) plays a key role in the perception of peripheral thermal and inflammatory pain. TRPV1 expression and channel activity are notably up-regulated by proalgesic agents. The transduction pathways involved in TRPV1 sensitization are still elusive. We have used a yeast two-hybrid screen to identify proteins that associate with the N terminus of TRPV1. We report that two vesicular proteins, Snapin and synaptotagmin IX (Syt IX), strongly interact in vitro and in vivo with the TRPV1 N-terminal domain. In primary dorsal root ganglion neurons, TRPV1 co-distributes in vesicles with Syt IX and the vesicular protein synaptobrevin. Neither Snapin nor Syt IX affected channel function, but they notably inhibited protein kinase C (PKC)-induced potentiation of TRPV1 channel activity with a potency that rivaled the blockade evoked by botulinum neurotoxin A, a potent blocker of neuronal exocytosis. Noteworthily, we found that PKC activation induced a rapid delivery of functional TRPV1 channels to the plasma membrane. Botulinum neurotoxin A blocked the TRPV1 membrane translocation induced by PKC that was activated with a phorbol ester or the metabotropic glutamate receptor mGluR5. Therefore, our results indicate that PKC signaling promotes at least in part the SNARE-dependent exocytosis of TRPV1 to the cell surface. Taken together, these findings imply that activity-dependent delivery of channels to the neuronal surface may contribute to the buildup and maintenance of thermal inflammatory hyperalgesia in peripheral nociceptor terminals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available