4.7 Article

Small heat-shock protein Hsp20 phosphorylation inhibits β-agonist-induced cardiac apoptosis

Journal

CIRCULATION RESEARCH
Volume 94, Issue 11, Pages 1474-1482

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000129179.66631.00

Keywords

apoptosis; beta-agonist; small heat-shock protein; cardiomyocyte; cytoskeleton

Funding

  1. NHLBI NIH HHS [HL-64018, HL-26057, HL-52318] Funding Source: Medline

Ask authors/readers for more resources

Activation of the sympathetic nervous system is a common compensatory feature in heart failure, but sustained beta-adrenergic activation induces cardiomyocyte death, leading to cardiac remodeling and dysfunction. In mouse cardiomyocytes, we recently reported that prolonged exposure to beta-agonists is associated with transient increases in expression and phosphorylation of a small heat-shock protein, Hsp20. To determine the functional significance of Hsp20, we overexpressed this protein and its constitutively phosphorylated (S16D) or nonphosphorylated (S16A) mutant in adult rat cardiomyocytes. Hsp20 protected cardiomyocytes from apoptosis triggered by activation of the cAMP-PKA pathway, as indicated by decreases in the number of pyknotic nuclei, terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling, and DNA laddering, which were associated with inhibition of caspase-3 activity. These protective effects were further increased by the constitutively phosphorylated Hsp20 mutant (S16D), which conferred full protection from apoptosis. In contrast, the nonphosphorylatable mutant ( S16A) exhibited no antiapoptotic properties. Immunostaining studies and immunoprecipitations with Hsp20 or actin antibodies demonstrated that Hsp20 translocated to cytoskeleton and associated with actin on isoproterenol stimulation. These findings suggest that Hsp20 and its phosphorylation at Ser16 may provide cardioprotection against beta-agonist-induced apoptosis. Thus, Hsp20 may represent a novel therapeutic target in the treatment of heart failure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available