4.7 Article

Evidence for genistein mediated cytotoxicity and apoptosis in rat brain

Journal

LIFE SCIENCES
Volume 75, Issue 4, Pages 499-509

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2004.01.010

Keywords

genistein; apoptosis; cytotoxicity; primary cortical neuron; brain tissue

Ask authors/readers for more resources

The effects of chronic treatment with high doses of genistein, a major isoflavone of soybeans and soy-based products, have yet to be determined and what is known remains controversial. The present study was undertaken to investigate the cytotoxic effects of chronic ingestion of genistein on rat brain in vivo and the observations were compared with results from in vitro studies with primary cultures of cortical neurons. Sprague-Dawley rats were given 2 or 20 mg/day genistein (p.o.) for four weeks. The high dose of genistein (20 mg/day) significantly increased lactate dehydrogenase (LDH) in rat brain tissue homogenates, whereas the low dose of genistein (2 mg/ day) decreased LDH. In addition, DNA fragmentation was detected in homogenates of brain tissue from rats receiving either dose of genistein. These results are consistent with those of in vitro studies indicating that high concentrations of genistein caused cytotoxicity and DNA ladder formation in primary cultures of cortical neurons. Genistein decreased the expression of the 32 kDa caspase-3 precursor and increased the levels of cleaved caspase-3 (18 kDa) in both rat brain tissue homogenates and in primary cultures of cortical neurons. Furthermore, expression of poly (ADP-ribose) polymerase (PARP) was also decreased in both experimental systems. These results suggest that chronic administration of genistein at high doses may induce cytotoxicity and apoptosis in the rat brain. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available