4.5 Article

Direct synaptic connections between rods and OFF cone bipolar cells in the rabbit retina

Journal

JOURNAL OF COMPARATIVE NEUROLOGY
Volume 474, Issue 1, Pages 1-12

Publisher

WILEY
DOI: 10.1002/cne.20075

Keywords

retina; rod pathway; rod; OFF cone bipolar cell

Funding

  1. NEI NIH HHS [EY 10608, EY 06515] Funding Source: Medline

Ask authors/readers for more resources

Mammalian retinal circuits are broadly divided into rod and cone pathways, responsible for dark- and light-adapted vision, respectively. The classic rod pathway employs a single type of rod bipolar cell, which synapses with AII amacrine cells. All amacrine cells then pass the signal to ON and OFF cone bipolar cells, respectively. Alternatively, rod signals may enter cones via gap junctions between rods and cones, and then pass from cones to cone bipolar cells. Thus, this second rod pathway does not utilize rod bipolar cells. Finally, in rodents, a third rod pathway, involving direct connections between rods and certain OFF cone bipolar cells, has been suggested. In this study, 56 OFF cone bipolar cells in the rabbit retina were dye-injected with Lucifer Yellow and their photoreceptor connections were examined by confocal microscopy in wholemount. The locations of rod and cone terminals were marked with antibodies to mGluR6 or synaptic proteins. Most OFF cone bipolar dendrites terminated at cone pedicles but some made potential contacts with rod spherules. The synaptic nature of these sites was confirmed by the presence of GluR2 receptors. All three OFF bipolar cell types had dendrites that terminated at rod spherules. However, similar to80% of Ba2 and Ba3, but only 26% of Ba1 OFF cone bipolar cells made rod contacts. This variability suggests differential rod input to certain retinal pathways. In summary, we report anatomical evidence for direct connections between rods and OFF cone bipolar cells in a nonrodent mammal. Our data suggest that this alternative rod pathway may be a common feature of the mammalian retina. J. Comp. Neurol. 474:1-12, 2004. (C) 2004 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available