4.7 Article

Numerical analysis of a reciprocating active magnetic regenerator made of gadolinium wires

Journal

APPLIED THERMAL ENGINEERING
Volume 37, Issue -, Pages 388-395

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2011.11.053

Keywords

Magnetocaloric; Simulation; Active magnetic regenerator

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan

Ask authors/readers for more resources

During the last century, the MagnetoCaloric Effect (MCE) has been widely used for realizing extremely low temperatures. However, it is only in the last three decades that some of the efforts to develop a benign and cutting-edge technology for realizing the MCE at temperatures around room temperature have been realized. The main component of magnetocaloric systems is the Active Magnetic Regenerator (AMR), but it is difficult to realize an optimum design for the AMR because of the poor mechanical properties of the MagnetoCaloric Materials (MCMs). In this study, an AMR configuration comprising a stack of gadolinium wires is investigated. A 1D physical model and a computer simulation program that can be used for studying the system are discussed in detail. The pressure drop, refrigeration capacity, Coefficient Of Performance (COP) and the exergy efficiency are numerically evaluated. Numerous simulation results obtained by using water as the working fluid for different regenerator geometries are discussed and optimal solutions are presented. These results are compared with those obtained for a configuration containing a bed of particles through which the working fluid flows. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available