4.8 Article

A low-volume platform for cell-respirometric screening based on quenched-luminescence oxygen sensing

Journal

BIOSENSORS & BIOELECTRONICS
Volume 19, Issue 11, Pages 1529-1535

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2003.12.008

Keywords

optical oxygen sensing; cell-based assays; oxygen respiration; phosphorescent oxygen probes; cell viability; high throughput screening

Ask authors/readers for more resources

Cell viability assays represent an important technology in modern cell biology, drug discovery and biotechnology, where currently there is a high demand for simple, sensitive and cost-effective screening methods. We have developed a new methodology and associated tools for cell-based screening assays, which are based on the measurement of the rates of oxygen uptake in cells by luminescence quenching. Scalable microchamber devices matching the footprint of a standard 96-well plate were developed and used in conjunction with long-decay phosphorescent oxygen probes. These devices permit cell non-invasive, real-time monitoring of cellular respiration and a rapid, one-step, kinetic assessment of multiple samples for cell viability, drug/effector action. These assays can be carried out on conventional fluorescence plate readers, they are suitable for different types of cells, including adherent and slow-respiring cells, require small sample volumes and cell numbers, and are amenable for high throughput screening. Monitoring of as little as 300 mammalian cells in 3 mul volume has been demonstrated. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available