4.6 Article

Eucalyptus bark lignin substituted phenol formaldehyde adhesives: A study on optimization of reaction parameters and characterization

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 92, Issue 6, Pages 3514-3523

Publisher

WILEY
DOI: 10.1002/app.20374

Keywords

adhesives; resins; lignin; physicomechanical properties; thermogravimetric analysis (TGA)

Ask authors/readers for more resources

The major adhesive resin worldwide used in the manufacture of plywood is phenol formaldehyde resole (PF) resin. The raw material for this kind of adhesive is derived from petroleum oil. Because of rising prices of crude oil and the scarcity of petroleum products, their replacement by natural resource-based raw material has become a necessity. In the present work, the possibility of replacing phenol in PF resin with lignin was explored. The parameters for preparation of bark lignin substituted PF (LPF) adhesive, such as lignin concentration, formaldehyde to phenol molar ratio, catalyst concentration, reaction time, and reaction temperature, were optimized. It was found that up to 50 wt % of phenol can be substituted by lignin to give an LPF adhesive with better bonding strength compared to that of control PF resin. Prepared resins were characterized using IR, DSC, and TGA. IR spectra of LPF adhesive showed structural similarity with that of PF adhesives. Thermal stability of LPF adhesive was found to be lower compared to that of control PF (CPF) adhesive. DSC studies revealed a lower curing temperature for LPF resin than that for CPF resin. (C) 2004 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available