4.7 Article

Exergoeconomic optimization of a trigeneration system for heating, cooling and power production purpose based on TRR method and using evolutionary algorithm

Journal

APPLIED THERMAL ENGINEERING
Volume 36, Issue -, Pages 113-125

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2011.11.069

Keywords

Exergoeconomic; TRR; Optimization; Trigeneration; Genetic algorithm

Ask authors/readers for more resources

In the present study, exergoeconomic optimization of a trigeneration system for cooling, heating and power purposes has been carried out. The system is made up of air compressor, combustion chamber, gas turbine, dual pressure heat recovery steam generator and absorption chiller in order to produce cooling, heating and power. The design parameters of this study are selected as: air compressor pressure ratio, gas turbine inlet temperature, pinch point temperatures in dual pressure heat recovery steam generator, pressure of steam that enters the generator of absorption chiller, process steam pressure and evaporator of the absorption chiller chilled water outlet temperature. The economic model used in this research is according to the total revenue requirement (TRR) and the cost of the total system product was defined as our objective function and optimized using a Genetic Algorithm technique. Results of exergoeconomic optimization are compared with corresponding features of the base case system. It has seen that objective function was modified about 15 percent after optimization. Furthermore, a sensitivity analysis has been presented in order to investigate the effects of decision variables on the different objective functions. Decision makers may find the methodology explained in this paper, very useful for optimal comparison and selection of trigeneration systems. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available